2021

Frauendiener, Jörg, and Chris Stevens. “A New Look at the Bondi-Sachs Energy-Momentum.” ArXiv:2104.13646 [Gr-Qc, Physics:Math-Ph], April 28, 2021. http://arxiv.org/abs/2104.13646.

Frauendiener, Jörg, and Chris Stevens. “The Non-Linear Perturbation of a Black Hole by Gravitational Waves. I. The Bondi-Sachs Mass Loss.” ArXiv:2105.09515 [Gr-Qc], May 20, 2021. http://arxiv.org/abs/2105.09515.

Boileau, G., Lamberts, A., Christensen, N., Cornish, N. J., Meyer, R. Spectral separation of the stochastic gravitational-wave background for LISA in the context of a modulated Galactic foreground. https://arxiv.org/abs/2105.04283

Tang, Y., Kirch, C., Lee, J.E., Meyer, R. Posterior consistency for the spectral density of non-Gaussian stationary time series. https://arxiv.org/abs/2103.01357

Boileau, G., Christensen, N.L., Meyer, R., Cornish, N.J.,
Spectral separation of the stochastic background fro LISA and study of the separability of the cosmological background level
Phys. Rev. D, https://arxiv.org/abs/2011.05055

Bizouard, M.A., Maturana-Russel, P., Torres-Forne, A., Obergaulinger, M., Cerda-Duran, P., Christensen, N., Font, J.A., Meyer, R.
Inference of proto-neutron star properties from gravitational-wave data in core-collapse supernovae
PRD. https://arxiv.org/abs/2012.00846

Maturana Russel, P., Meyer, R,
Bayesian spectral density estimation using psplines with quantile-based knot placement
Computational Statistics, 29, 67-78. https://arXiv.org/abs/1905.01832.1–16.

Boileau, G., Christensen, N.L., Meyer, R., Cornish, N.J.,
Spectral separation of the stochastic background fro LISA and study of the separability of the cosmological background level
Submitted to PRD, https://arxiv.org/abs/2011.05055

Edwards, M. C.
Classifying the equation of state from rotating core collapse gravitational waves with deep learning
PRD, 103, 024025 (2021). https://arxiv.org/abs/2009.07367

2020

Beyer, F., J. Frauendiener, and J. Ritchie. Asymptotically Flat Vacuum Initial Data Sets from a Modified Parabolic-Hyperbolic Formulation of the Einstein Vacuum Constraint Equations. Physical Review D 101, no. 8 (April 6, 2020): 084013. https://doi.org/10.1103/PhysRevD.101.084013.

Beyer, Florian, Jörg Frauendiener, and Jörg Hennig. “Explorations of the Infinite Regions of Spacetime.” International Journal of Modern Physics D, June 25, 2020, 2030007. https://doi.org/10.1142/S0218271820300074.

Frauendiener, J. “Gravitational Waves and the Sagnac Effect.” Classical and Quantum Gravity 37, no. 5 (February 2020): 05LT01. https://doi.org/10.1088/1361-6382/ab574c

Burke, O., Gair, J. R., Simon, J., and Edwards, M. C.
Constraining the spin parameter of near-extremal black holes using LISA,
PRD, 102, 124054 (2020). https://arxiv.org/abs/2010.05932

Edwards, M.C.,Maturana Russel, P., Meyer, R, Gair, J., Korsakova, N., Christensen, N.
Identifying and Addressing Nonstationary LISA Noise
PRD, 102, 084062, https://arxiv.org/abs/2004.07515

Meyer, R., Edwards, M.C., Maturana-Russel, P, Christensen, N.
Computational techniques for parameter estimation of gravitational wave signals
Wiley Interdisciplinary Reviews – Computational Statistics (25 pages) http://dx.doi.org/10.1002/wics.1532

Meier, A., Kirch, C., Meyer, R.
Bayesian Nonparametric Analysis of Multivariate Time Series: A Matrix Gamma Process Approach
Journal of Multivariate Analysis, 175 104560,(24 pages). https://www.sciencedirect.com/science/article/pii/S0047259X18306225

J. Hennig and R. P. Macedo,
Fully pseudospectral solution of the conformally invariant wave equation on a Kerr background
arXiv:2012.02240

J. Hennig,
Axis potentials for stationary n-black-hole configurations,
Class. Quantum Grav. 37, 19LT01 (2020)arXiv:2009.03992.

F. Beyer, J. Frauendiener, and J. Hennig,
Explorations of the infinite regions of space-time,
Int. J. Mod. Phys. D 29, 2030007 (2020)arXiv:2005.11936.

J. Hennig,
On the balance problem for two rotating and charged black holes,
Class. Quantum Grav. 36, 235001 (2019)arXiv:1906.04847.

2019 and Earlier

Beyer, Florian, Leon Escobar, Jörg Frauendiener, and J. Ritchie. “Numerical Construction of Initial Data Sets of Binary Black Hole Type Using a Parabolic-Hyperbolic Formulation of the Vacuum Constraint Equations.” Classical and Quantum Gravity 36, no. 17 (August 9, 2019): 1–31. https://doi.org/10.1088/1361-6382/ab3482.

Daszuta, Boris, and Jörg Frauendiener. “Numerical Initial Data Deformation Exploiting a Gluing Construction: I. Exterior Asymptotic Schwarzschild.” Classical and Quantum Gravity 36, no. 18 (August 2019): 185008. https://doi.org/10.1088/1361-6382/ab34d8.

Doulis, Georgios, Jörg Frauendiener, Chris Stevens, and Ben Whale. “COFFEE—An MPI-Parallelized Python Package for the Numerical Evolution of Differential Equations.” SoftwareX 10 (July 1, 2019): 100283. https://doi.org/10.1016/j.softx.2019.100283.

Maturana Russel, P., Meyer, R., Veitch, J., Christensen, N.L.
Stepping-stone sampling algorithm for calculating the evidence of gravitational wave models,
PRD, 99, 084006 (10 pages)
Corresponding R code on Github: https://github.com/pmat747/powModSel
Corresponding Python code on Github: https://github.com/pmat747/pythonPowModSel

Kirch, C., Meyer, R., Edwards, M.C., Meier, A.
Beyond Whittle: Nonparametric Correction of a parametric likelihood with a focus on Bayesian time series analysis
Bayesian Analysis,  14, 1037-1073, https://projecteuclid.org/euclid.ba/1540865702

Edwards, M.C., Meyer, R., Christensen, N.L.,
Bayesian nonparametric spectral density estimation using B-spline priors
Statistics and Computing, 29, 67-78. https://doi.org/10.1007/s11222-017-9796-9

J. Hennig,
Smooth Gowdy-symmetric generalised Taub-NUT solutions in Einstein-Maxwell theory,
Class. Quantum Grav. 36, 075013, (2019)arXiv:1811.10711.

Frauendiener, Jörg. “Notes on the Sagnac Effect in General Relativity.” General Relativity and Gravitation 50, no. 11 (October 23, 2018): 147. https://doi.org/10.1007/s10714-018-2470-5.

Frauendiener, Jörg, and Jörg Hennig. “Fully Pseudospectral Solution of the Conformally Invariant Wave Equation near the Cylinder at Spacelike Infinity. III: Nonspherical Schwarzschild Waves and Singularities at Null Infinity.” Classical and Quantum Gravity 35, no. 6 (March 22, 2018): 065015. https://doi.org/10.1088/1361-6382/aaac8d.